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Executive Summary 

This report analyses the feasibility of remotely sensed higher-level products 

proposed in Deliverable 4.5. However, the scope of this work is widened based on 

the outcomes of other tasks within the Water-ForCE, notably from WP1 where gaps 

in the current Copernicus water quality products portfolio were revealed based on 

an analysis of users and stakeholders needs. Further, Deliverable 2.2 identified 

several missing groups of products among the Copernicus products. In this Report 

we analyse which of the requested, but currently missing, products are feasible in 

the foreseeable future. Moreover, we discuss which of the products could be 

included in the Copernicus core services and which should be delivered by the 

private sector. 

We show that there are multiple higher level biogeochemical products 

(primary production, total phosphorus, total nitrogen), different carbon fractions 

(dissolved organic carbon, pCO2, coloured dissolved organic matter), shallow water 

products (bathymetry, benthic habitat, carbon fixed by benthic habitat, etc.) as well 

as floating matter (plastic and other litter, floating cyanobacteria, macroalgal 

(Sargassum, Ulva) mats, etc.) products that are requested by users are feasible to 

deliver within the Copernicus portfolio. The level of maturity of the products is 

variable. Several of them require validation over wider range of waterbodies before 

they can be used in global service. Some product need assessment whether they 

should be delivered freely within the Copernicus core services or by industry as 

downstream services. 
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1. Introduction 

1.1 Water-ForCE 

The Horizon-2020 project Water-ForCE (Water scenarios For Copernicus 

Exploitation) will develop a Roadmap for Copernicus Inland Water Services. The 

Roadmap will contain: 

● Analysis of the landscape of user communities 

● Analysis on how Copernicus water services can support policy 

development and monitoring of their implementation 

● Gap analysis of the Copernicus water-related service portfolio 

● Identification of future higher-level biogeochemical products 

● Technical requirements for future Copernicus sensors to improve the 

water-related service portfolio 

● Proposal for organising in situ measurement networks to validate 

Copernicus remote sensing and modelling products and to provide 

complementary data not collected by remote sensing 

● Proposal on how to define relationships between Core Services and 

Downstream services 

● Scenarios of the most optimal delivery of water services to different user 

communities. 

The Water-ForCE project is coordinated by the University of Tartu (Estonia) 

with 20 participating organisations from all over Europe. It connects experts in water 
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quality and quantity, Earth observation, policy, research, engineering and service 

sectors.  

This report is part of Work Package 2 (WP2) “Water quality continuum” which 

focuses on the water quality related products from inland to coastal waters. 

 

1.2 Purpose of the document 

The Space call LC-SPACE-24-EO-2020 identified a specific element that 

should be addressed in the frame of the project – “development of high-level 

biogeochemical products, beyond basic variables for water quality and food web 

modelling or analysis”.  The report is our response to this part of the call. 

 

1.3 Content of the Report 

The preliminary title of the Report was “Higher-level biogeochemical 

products”. It was planned that Task 2.4 will be based on the analysis carried out 

within Task 4.5 which analysed the user needs and currently available technical 

capabilities of different in situ sampling sensors and proposed higher-level 

biogeochemical products that can potentially be estimated by combining different 

in situ sensors. Task 2.4 should have then taken these products and assess whether 

some of them can be produced by combining different remote sensing products 

into remotely sensed higher-level biogeochemical products. This originally planned 

part of the work is shown in the Chapter 2 of this report. 
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On the other hand, Water-ForCE WP1 and Task 2.2 identified broad groups of 

remote sensing products which are highly desired by users but currently not 

provided in the frame of the Copernicus program. The Deliverable 2.2 identified 

broad gaps in the water quality part of the current Copernicus product portfolio. 

These gaps need more detailed analysis before proposing the way forward in the 

Copernicus Roadmap which will be the main output of the Water-ForCE project. 

Therefore, this report analyses the gaps and proposes the ways forward to be 

included in the Roadmap. This analysis is provided in Chapter 3 of this report.  

2. Definition of higher-level 

biogeochemical products 

It is important to define what the ‘higher-level products” refers to as no 

definition was provided in the Space call. One of the possible interpretations is that 

the higher-level products are those that combine more than one basic remote 

sensing product and involve algorithms or models that combine several input 

variables into a new product. Such in situ products were analysed in Deliverable 4.5 

and are their respective remote sensing analogues are presented here in Chapter 

2.1. 

The second definition of a higher-level product is one that is calculated from 

a variable that can be directly mapped using an algorithm, or a parameter modelled 

from remote sensing. For example, satellites register the impact of Coloured 

Dissolved Organic Matter (CDOM) on water colour (the remotely sensed signal). 
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Thus, CDOM can be considered as a basic product. A product many users need is 

dissolved organic carbon, DOC. However, a large fraction of DOC is not coloured. If 

we apply an assumed relationship between CDOM and DOC then we can map DOC 

concentration using CDOM as a proxy. In that case the DOC is a higher-level 

biogeochemical product. 

Another possible definition of higher level products is generating products that are 

aggregated products in space or time (typically referred to as Level-3 processing) or 

add new layers of interpretation (typically referred to as Level-4 processing). 

Examples of achieving “higher-level” products from aggregation of remote sensing 

products include deriving indicators. In the Water Framework Directive (WFD), 

eutrophication is often estimated as the summer mean chlorophyll-a concentration 

for a given waterbody. In that case, daily chlorophyll-a observations are the basic 

product and the mean or median for all observations (pixels) of this waterbody over 

the summer period is the higher-level product contributing to WFD reporting. Such 

products are discussed in Chapter 2.2. 

 

2.1 Combining remotely sensed variables as optical proxies for 

biogeochemical processes 

Task 4.5 identified the following higher-level biogeochemical products, which 

can be obtained by means of combining data from multiple in situ sensors or using 

optical in situ proxies, and which have potential to be mapped using remote sensing 

products as input:  
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● primary production (PP) 

● total phosphorus (TP) 

● dissolved organic carbon (DOC) 

● partial pressure of carbon dioxide (pCO2). 

The carbon related products (DOC and pCO2) were identified as a gap by many 

users as identified in the analysis carried out by the WP1 team. Therefore, carbon 

related products are discussed in more detail in Chapter 3 “Gaps in water quality 

products identified by the Water-ForCE deliverables”. 

 

Primary production (PP) 

Phytoplankton primary production (PP) represents the synthesis of organic 

matter produced in aquatic systems, an essential part of the food web forming the 

basis of the ecological pyramid. Measuring primary production in terms of carbon 

fixation is time-consuming and (using radioisotopes) increasingly regulated. These 

conventional methods require in situ incubations of typically several hours or longer 

and subsequent laboratory analysis. Consequently, it is difficult to carry out more 

than a few measurements per day and the results obtained are strictly point 

measurements (including depth profiles as appropriate). Alternative methods (see 

D4.5) to estimate primary production are based on intermediary processes (electron 

transport or oxygen evolution) and can be more efficient to carry out in situ. 

However, they are not widely established and mostly absent in regular monitoring 

practices. 
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Bio-optical model simulations provide an alternative way to estimate primary 

production. For example, Kiefer and Mitchell (1983) and Behrenfeld and Falkowski 

(1997) developed primary production models for marine environment.  A simple bio-

optical model for lakes was developed by Arst et al. (2008), where the PP (in mg C 

m–3 h–1) is a function of photosynthetically absorbed radiation and quantum yield of 

carbon fixation. The in situ version of the model uses three input variables: 

downwelling irradiance for PAR region, chlorophyll-a, and the diffuse attenuation 

coefficient of water (Kd). All these tree variables are available as satellite remote 

sensing products. It has been demonstrated that the model by Arst et al. (2008) can 

replicate vertical and temporal variation of the PP in lakes (Kauer et al., 2009, 2013, 

2015; Soomets et al., 2019, 2020). Thus, it is possible to map lake PP using remote 

sensing. The model has been validated in several large eutrophic lakes, the 

oligotrophic Lake Geneva, and some coastal regions of the Baltic Sea. A wider 

validation in different lake types and coastal waters is therefore necessary. A wider 

research project on the topic is recommended before the PP product can be 

considered as an extension of the Copernicus water portfolio. 

 

Total phosphorus (TP) 

Total phosphorus was identified by Task 4.5 as a higher-level biogeochemical 

product that can be estimated by in situ and remote sensing sensors. TP does not 

have a distinct optical signature and therefore cannot be estimated directly by 

remote sensing sensors. Nevertheless, TP has been shown to correlate with water 

clarity. In more turbid waters there are more particles and phosphorous is often 
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particle bound. TP relationship with water clarity is affected by particle size 

distribution and spatial variation as well as by the fraction of phosphorous 

associated with particles (Lannergård et al., 2019). Several in situ studies of surface 

waters have dealt with water turbidity and TP relationship (Al-Ruzouq et al., 2020; 

Grayson et al., 1996; Kämäri et al., 2020; Kusari, 2022; Lannergård et al., 2019, etc.). 

Moreover, Kutser et al. (1995) showed that lake TP can be mapped (in a single lake) 

using Secchi depth as a proxy.  

It is possible to develop empirical remote sensing algorithms based on 

statistical relationships between remotely sensed signal properties and water 

quality variables even if the variables do not have a direct impact on the remote 

sensing signal, like in the case of TP. Several remote sensing studies (Ding et al., 

2020; Du et al., 2018; Fengyang et al., 2020; Gao et al., 2015; Hossen et al., 2022; Liu et 

al., 2015; S. Lu et al., 2020; Qiao et al., 2021; Shang et al., 2021; Song et al., 2012; Sun et 

al., 2014, 2022; Trevisan and Forsberg, 2007; Wu et al., 2010; Xiong et al., 2022, 2019; 

Yu et al., 2017; Zeng et al., 2022; Zhang et al., 2022) have developed empirical 

algorithms for mapping TP.   

Both conventional empirical methods and machine learning algorithm 

development methods have been used to estimate TP from remote sensing data 

(Xiong et al., 2022). The most direct empirical derivation method applies the 

statistical relationship between reflectance and measured TP concentration to 

derive the TP remote sensing algorithm (Isenstein and Park, 2014; Xiong et al., 2019). 

Indirect derivation methods include the initial derivation of TP concentration from 

optically active substance concentrations, followed by selection of algorithms or 
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wavebands to determine those individual concentrations, based on literature (Wu 

et al., 2010; Xiong et al., 2022). The direct empirical method is more broadly applied 

because it is simple and often delivers good results, whereas the indirect derivation 

method is complex and disposed to precision loss because of the two-step method 

(Xiong et al., 2022, 2019), whilst possibly having better global transferability. The 

relationships between TP and optically active substances in optically complex 

waters are complicated and may not be well expressed by regression models (Xiong 

et al., 2022). Unsurprisingly, machine learning has been successfully introduced into 

TP estimation too (Chang et al., 2013; Sun et al., 2014; Xiong et al., 2022). In general, 

machine learning algorithms outperform conventional algorithms used for water 

quality estimation (Chen et al., 2014; Concha and Schott, 2016; Sun et al., 2011; Xiong 

et al., 2022). 

The optical variability of inland and coastal waters is very high.  The 

abovementioned remote sensing studies have been carried out in a limited number 

of waterbodies. Therefore, further studies on the relationships between TP and 

observable optical water quality variables (turbidity, Secchi depth, Chl-a, Kd, etc.) have 

to be studied in as wide selection of waterbodies as possible before robust 

(applicable across a range of ecological and optical diversity) TP algorithms and 

measure of algorithmic uncertainty can be proposed to be used in the Copernicus 

portfolio. 
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2.2 Spatiotemporal aggregation for higher-level indicators  

It is possible to derive meaningful indicators from existing products in the 

Copernicus services. For example, monitoring agencies tend to report 

eutrophication indicators as the seasonal mean. Mean summer chlorophyll-a is 

calculated from the available (usually very limited) in situ sample analyses. Remote 

sensing extends the observational dataset by orders of magnitude based on daily 

(large waterbodies) or weekly (small waterbodies) satellite overpasses. Thus, 

deriving the distribution of remotely sensed chlorophyll-a values provides additional 

insight into how a waterbody behaves with respect to the reporting thresholds for 

high, good, moderate, poor or bad ecological status. In terms of data aggregation, 

both the “summer mean” across all observations of a water body and the data 

distributions may be considered higher-level biogeochemical products, to assist 

management of water bodies under the WFD. 

Another example of a higher-level product is the cyanobacterial index 

developed by HELCOM. It consists of two parameters 1) cyanobacterial surface 

accumulations (CSA) combining information of volume, length of bloom and severity 

of surface accumulations and 2) cyanobacterial biomass (CyaBI) 

(https://www.helcom.fi/wp-content/uploads/2019/08/Cyanobacterial-bloom-

index-HELCOM-pre-core-indicator-2018.pdf). In principle, both can be estimated 

from remote sensing data provided suitable sensors such as Sentinel-3 OLCI are 

used. Thus, the CSA and CyaBI can be considered as higher-level biogeochemical 

products.  
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One question is whether such products should be provided as Copernicus 

core service for the whole Europe. The advantage of providing then through the core 

service is consistency in pan-European products for indicators in EU directives. 

However, some countries use already locally tuned algorithms that are then 

aggregated into higher level products. Thus, it has to be discussed among the EU 

member states whether they prefer to have unified pan-European higher-level 

products on top of country and region-specific results.  

3. Gaps in higher-level biogeochemical 

water quality products identified from user 

and policy requirements analysis 

WP1 “Policy, stakeholder and service analysis” assessed Copernicus user needs 

and requirements by performing analysis of legislation, interviewing different users 

and user groups as well as SDGs and ECVs. There are number of SDGs that are 

directly related to water quality, like zero hunger, clean water and sanitation, 

responsible consumption and production, climate action, life below water, and life 

in land. Many ECVs are directly or indirectly related to water quality as well. For 

example, ocean colour = water reflectance detected by many remote sensing 

instruments, is an ECV itself and marine habitats, plankton and other parameters 

derived from ocean colour are ECVs as well.  Gap analysis of water quality products 

was performed also within Deliverable 2.2 “Recommendations on Copernicus water 
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quality products”. The water quality products required by a variety of users, but 

currently missing in the Copernicus portfolio, can be divided (from remote sensing 

perspective) into three groups:  

1) carbon related products (e.g., dissolved organic carbon, DOC, total organic 

carbon, TOC, CO2) 

2) shallow water products (e.g., bathymetry, benthic cover, benthic habitat type, 

benthic disturbance) 

3) surface material products (e.g., plastic and other litter, floating cyanobacteria, 

water hyacinth, macroalgae (e.g., Sargassum or Ulva), pollen). 

The first group of products are described based on literature since they are well-

researched. For the latter two groups, Water-ForCE organised a specialist workshop 

in Milan on September 20-21, 2022. Observations are presented in the sections to 

follow. 

3.1 Carbon related products 

Detecting organic carbon in inland and coastal waters is important from 

several perspectives ranging from biogeochemical modelling in climate studies to 

ecological health monitoring and water treatment for consumption. 

Lakes play an important role in biogeochemical cycles (despite their 

relatively small total area). More than 90% of the total organic carbon in lakes and 

reservoirs is in the form of dissolved organic carbon (Wetzel 2001), but lakes can act 

both as carbon sinks and sources. Therefore, it is critical to know the DOC stock and 

trends in inland waters, to further the global stocktake of carbon pools, ultimately 
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promote lake carbon to an Essential Climate Variable and include it in Earth system 

modelling.   

In ecological context, a lake browning effect related to increased CDOM 

concentrations has been reported. It is also important to map CDOM in lakes as the 

CDOM increase, called lake browning, is happening both in small (Monteith et al. 

2007; Kritzberg 2017; Kritzberg et al. 2020; Nydahl et al. 2019; Meyer-Jacob et al. 2019; 

Blanchet et al. 2022) and large lakes (Kutser and Ligi, in preparation) lakes. CDOM 

Browning protects aquatic biota from damaging UV radiation and increases 

resources for heterotrophic microorganisms, but it decreases primary production 

(lower light availability) and has negative impacts on higher trophic levels (Karlsson 

et al. 2015; Tranvik et al. 2018). Browning also increases lake surface water 

temperature (Kutser 2010) and has impact on lake mixing regimes (Woolway et al. 

2019). 

Carbon dioxide (CO2) is a key substance involved in a number of 

biogeochemical processes in natural waters (Atamanchuk et al. 2014). The most 

common parameter, which describes the amount of dissolved CO2 gas in water, is 

the partial pressure or pCO2 (Atamanchuk et al. 2014). Inland waters are broadly 

considered as substantial sources of CO2 to the atmosphere (Duarte et al. 2008; 

Kortelainen et al. 2006; Lazzarino et al. 2009; Sobek et al. 2005; Tranvik et al. 2009; 

Wen et al. 2021; Yan et al. 2021). Previous studies have shown that the temporal and 

spatial distributions of partial pressure of carbon dioxide (pCO2) in inland waters 

often exhibited high heterogeneity, which caused great uncertainty in lake CO2 flux 

calculations (Wen et al. 2021). Rivers and streams comprise higher pCO2 than lakes 
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and reservoirs in the same climatic zone, and tropical waters characteristically show 

higher pCO2 than temperate, boreal, and arctic waters (Wen et al. 2021). In terms of 

drinking water provision, detection of dissolved organic matter was one of the most 

highly ranked needs in the user interviews carried out in WP1. This is not surprising, 

because inland waters are a major source of drinking water. DOC is a complex 

mixture of compounds that can affect aquatic microbial community structure and 

levels and can consequently cause problems with fouling of drinking water (taste, 

odour and hygiene problems). Removing DOC is one of the hardest parts of water 

treatment requiring chemical treatment. This adds to the cost of drinking water 

production. For the correct dosage, accurate information on water DOC content is 

required. Furthermore, the disinfection of water by chlorination (a crucial step in 

water treatment) creates carcinogenic organic compounds which affect human 

(McDonald and Komulainen, 2005; Koivusalo et al. 1997; Magnus et al. 1999). 

Therefore, the organic carbon has to be removed as much as possible. All this 

stresses the need for frequent information about inland water DOC over large areas 

for these waterbodies that are used as drinking water source. 

Processes like droughts, wildfires, land use changes, eutrophication, permafrost 

thaw, etc. change both the amount and composition of DOC in inland and coastal 

waters (Xenopoulos et al. 2021). Nevertheless, Minor and Oyler (2021) showed that 

the DOC and its coloured component CDOM are the least studied components of 

the carbon cycle despite their relevance. 

Remote sensing can detect only optically active water constituents, which in the 

case of proxies for dissolved carbon we focus on CDOM. Therefore, mapping of DOC, 
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required by many users, is possible if there is a reasonable correlation between the 

coloured component - CDOM and the DOC. Many studies have shown that this is the 

case at specific scales (per lake as well as global relationships), at least in inland 

waters (Tranvik, 1990; Kallio, 1999; Molot and Dillon, 1997; Erlandsson et al. 2012; 

Kutser et al., 2015a). Exceptions are also reported (Hestir et al. 2015). Moreover, iron 

associated to organic matter acts as a colouring agent with similar optical properties 

increasing the uncertainty in lake CDOM estimation (Kutser et al., 2015a). On the 

other hand, Kutser et al. 2015a and Brezonik et al. 2019 have shown that the 

influence of iron on mapping of lake CDOM with remote sensing is small. 

 

3.1.1 Current state of the art 

The Copernicus inland water product portfolio does not contain specific 

products on organic carbon. The trophic state index is related to the production of 

organic matter but derived from chlorophyll-a estimates. There is no product which 

describes the concentration of CDOM.  CDOM is, to a certain degree, provided for 

some seas in the CMEMS product portfolio as there is a product CDM443 (sometimes 

called ADG443), which has variable names in documentation, but is most often 

called “volume absorption coefficient of radiative flux in seawater due to dissolved 

organic matter and non algal particles”. However, validation of the product is not 

included in the CMEMS documentation for any of the sea areas for which CMEMS 

products are provided (Atlantic, Arctic, Baltic, Mediterranean, and Black Sea). 

EUMETSAT is providing a detritus and dissolved matter ADG443 product retrieved 

with a bio-optical model together with phytoplankton absorption and particle 

backscattering. However, unlike for most other products there is no information 
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about the accuracy of the ADG443 product. ESA Ocean Colour Climate Change 

Initiative (OC-CCI) provides detrital and dissolved material absorption coefficient at 

6 wavelengths retrieved with Lee al. (2002) QAA model. The adg  product is available 

for the very largest lakes (Caspian Sea, Laurentian Great Lakes, Baikal, etc.) and 

seas/oceans. However, this is also a combined product of CDOM and particulate 

matter absorption. 

Various approaches have been proposed for retrieving CDOM in inland and 

coastal waters. These range from simple empirical band ratio algorithms (Vertucci 

and Likens 1989; Kutser et al. 1996, 1998a,b, 2005a,b, 2015b; Hirtle and Rencz 2003;  

see also review papers by Odermatt et al. 2012 and Zhu et al. 2014) to semi-analytical 

and analytical methods that retrieve either concentrations of all optically active 

substances (Arst and Kutser 1994; Kutser et al. 2001; Pierson and Strömbeck 2001; 

Brando and Dekker 2003) or inherent optical properties (among them absorption by 

CDOM) simultaneously (Lee et al. 2002). These algorithms and models used to 

retrieve CDOM have been validated at relatively small scale (from a single lake to 

sometimes regional scale) (Brezonik et al. 2005, 2015; Kutser et al. 2001, 2005a,b, 

2015a,b; Zhu et al. 2014; Koll-Egyed et al., 2021; Liu et al., 2021; Lyu et al., 2017; Mannino 

et al., 2014, 2008; Pahlevan et al., 2022).  

One of the possible ways to deal with the shortcomings of empirical 

algorithms is using optical water type classifications. In that case lakes (or coastal 

waters) are first divided into different optical water types and then different 

algorithms are used for each water type to retrieve water quality parameters 

(Spyrakos et al. 2018). 
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Remote sensing has been applied to estimate surface pCO2 in oceans and 

coastal waters using often Moderate-Resolution Imaging Spectroradiometer 

(MODIS) imagery and MODIS-derived products (Else et al., 2008; Huang et al., 2013; 

Olsen et al., 2004; Robbins et al., 2018; Wen et al., 2021) together with statistical 

approaches and machine learning techniques (Bai et al., 2017, 2015; Chen et al., 2017; 

Fu et al., 2020; Olsen et al., 2004; Song et al., 2016; Wen et al., 2021). In general, the 

empirical algorithms and machine learning approaches can work reasonably well in 

many seas and coastal areas (Chen et al., 2017; Else et al., 2008; Fu et al., 2020; Wen 

et al., 2021). Unfortunately, remote sensing algorithms and models for pCO2 in ocean 

and coastal waters cannot be used directly for inland waters since the pCO2 in inland 

waters is driven by different factors and mechanisms. However, satellite 

observations of pCO2 in inland waters could reach a relatively high frequency and 

continuous, large-scale, and long-term data coverage compared to field studies 

(Wen et al. 2021). pCO2 in the water surface cannot be directly derived from optical 

remote sensing data. Recent studies have revealed the presence of four interrelated 

processes closely associated with water surface pCO2, which include biological 

activity, physical mixing, thermodynamics, and air–water gas exchange (Wen et al. 

2021). Environmental and biogeochemical variables that can be linked with these 

processes are water surface temperature, water salinity, phytoplankton 

concentration, CDOM, latitude and mixed layer depth (Jonsson et al., 2007; Morales-

Pineda et al., 2014; Yang et al., 2019; Wen et al. 2021).  Some of these variables can be 

derived from satellite data, e.g., lake surface temperature, chlorophyll-a 

concentration, CDOM, and solar radiation absorption, and used as indicators in the 
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remote sensing models of water surface pCO2 (Wen et al. 2021). Consequently, in 

principle, it should be possible to identify the spatiotemporal distribution of pCO2 in 

inland waters using satellite-derived variables (Kutser et al. 2005a,b; Wen et al. 2021). 

Additionally, optical proxies, e.g., CDOM (Kutser et al. 2005a,b) and turbidity index 

(Saurav et al. 2021) that can be derived from satellite data have been used to 

estimate indirectly pCO2 in some rivers and lakes. However, the accuracy and 

robustness of the prediction models need to be assessed for a variety of inland 

waters before remote sensing can be used for the large-scale estimation of pCO2 

(Wen et al. 2021). Additionally, the geochemical processes in inland waters can show 

strong spatiotemporal heterogeneity leading to the unstable, non-universal 

relationship between pCO2 and its indicators (Kutser et al., 2015; Morales-Pineda et 

al., 2014; Ouyang et al., 2017; Qi et al., 2020; Valerio et al., 2021; Wen et al., 2021b; Yu 

et al., 2017). Therefore, the relationships in the prediction models vary among 

different inland waters and their regions, which is the current challenge of the pCO2 

remote sensing in inland waters (Bai et al. 2015; Matos Valerio et al. 2018; Morales-

Pineda et al. 2014; Ouyang et al. 2017; Valerio et al. 2021; Wen et al. 2021; Yu et al. 

2017). Consequently, the development of inverse models based on biogeochemical 

and environmental variables, machine learning algorithms, and numerous in situ 

data may lead to better applicability of the retrieval algorithms over longer periods 

and across larger spatial scales (Wen et al., 2021).  

It must be noted that the retrieved pCO2 values are the instantaneous value 

at the satellite transit time (Wen et al., 2021). To transform pCO2 values from an 

instant value to hours/days, the relationship between instantaneous lake pCO2 and 
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the daily/weekly mean value has to be used (Wen et al., 2021). In addition, combined 

with the in situ measured values of the diurnal pCO2 variation and seasonal pCO2 

variation in a lake, we could realise the conversion of the daily value to the seasonal 

mean value of lake pCO2 through cross verification between different sensors with 

different time resolutions (Wen et al., 2021).  

In future studies, reliable and generalized pCO2 remote sensing models and 

algorithms need to be developed to evaluate pCO2 in inland waters (Wen et al., 2021). 

Moreover, the conversion of the retrieved pCO2 instantaneous values into 

days/months remains a major technical challenge, which is essential for the 

accurate estimation of global CO2 flux from inland waters based on remote sensing 

technology (Wen et al., 2021). 

 

3.1.2 Potential for carbon products to be included in the Copernicus portfolio 

Several fractions of carbon can potentially be mapped in inland and coastal 

waters by the mean of remote sensing as was described above. However, most of 

research described above has relatively limited geographic scope. Thus, the first 

step would be to establish whether there is a meaningful part of the state of the art 

that could be applied globally. This requires further research.  

There are potential local or regional users of carbon products (e.g. drinking 

water industry). Their needs can be satisfied by local services provided by industry. 

However, it is obvious that the carbon products that are feasible should be included 

in the Copernicus core services portfolio due to the importance of these products 

for carbon pools and climate studies.  
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3.2 Shallow water products 

There are multiple shallow water products requested by various user groups 

and there are shallow water characteristics which are indicators of different 

directives. For example, bathymetry, benthic cover, benthic cover type, physical 

disturbances of the sea/lake bottom are variables that are the most commonly 

requested. These variables can then be used to generate higher-level 

biogeochemical products. For example, the benthic coverage percentage and cover 

type will support estimates of carbon fixed in benthic vegetation. While the capacity 

of terrestrial ecosystems and aquatic phytoplankton in carbon fixation has 

predominantly been considered in carbon models, only scant attention has paid to 

the role of coastal (both inland and marine) vegetated ecosystems in global carbon 

budget (Laffoley and Grimsditch, 2009; Duarte 2017) 

Benthic habitats (e.g. coral reefs, macroalgal beds) are often heterogenous 

even at less than one meter scale. Benthic disturbances (like scars created in benthic 

habitats by boat engines or other means) may also be limited in scale (narrow).  

Therefore, it is preferable to have as high spatial and spectral resolution of sensors 

that are used in collecting shallow water imagery. However, it has been 

demonstrated (Hedley et al. 2018) that 10 m resolution of Sentinel-2 is sufficient for 

developing of several shallow water products. Consequently, the launch of Sentinel-

2 enables the development of Copernicus services in the shallow water domain, 

while the launch of CHIME and other hyperspectral missions (PRISMA, EnMAP, etc.) 

will further support developing high-resolution shallow water products.  Additionally, 

several Copernicus contributing missions provide very high-resolution imagery at 
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global scale, with daily revisit times. Thus, there are two questions: what can be done 

in the field of shallow water remote sensing using the satellite imagery available to 

Copernicus and should shallow water remote sensing become part of the free and 

open Copernicus (core) services, or rather provided as downstream services. The 

Water-ForCE project organised a workshop in Milan in September 20-21, 2022, to 

discuss these questions, with results presented in 3.2.2 below. 

 

3.2.1 Current state of the art 

Shallow water products are currently not offered through CLMS or CMEMS 

(D2.2 https://web-waterforce-files.vercel.app/wp2-d22-final-revised21012024.pdf ). 

Benthic variables that are retrievable by remote sensing include: habitat cover (bare 

vs. vegetated), habitat distribution maps, status or condition of benthic organisms 

(e.g. seagrass, corals), abundance of submerged aquatic vegetation (SAV) (e.g. 

percent cover, biomass, leaf area index), primary productivity of SAV, bathymetry, 

physical disturbances of marine bottom, etc. Many products are already provided for 

coral reef areas around the world by Allen Coral Atlas (allencoralatlas.org). For 

example, they deliver benthic maps, geomorphic maps, reef extent together with 

some background data like the NOAA Coral Reef Watch which estimates coral 

bleaching probability. There are companies that deliver satellite derived bathymetry 

and habitat maps at local to national scales, but these services are provided on 

commercial bases. 

 

 

 

https://www.google.com/url?q=https://web-waterforce-files.vercel.app/wp2-d22-final-revised21012024.pdf&sa=D&source=docs&ust=1669124806623956&usg=AOvVaw17mOF7BaBuBpyrC6a8YKOS
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3.2.1.1 Benthic habitats 

The majority of the benthic habitat distribution maps are created using 

different image-based classification approaches, such as unsupervised (Bouvet et al. 

2003), supervised (Fornes et al. 2006; Traganos and Reinartz 2018a) and object-

based (Phinn et al. 2012; Zhang et al. 2013; Roelfsema et al. 2013) classification 

methods. Image-based methods require availability of ground truth data and/or 

detailed expert knowledge of the area (Campbell 2007). Lately, various machine 

learning methods have emerged (Traganos and Reinartz, 2018b; Wicaksono et al. 

2019), which also require training data. An alternative approach in image 

classification is so called signal-based or physics-based classification, where 

measured and/or modelled spectral libraries are used to interpret imagery (Kutser 

et al. 2002, 2006; Mobley et al. 2005; Lesser and Mobley 2007; Vahtmäe et al. 2013). 

The signal-based classification does not require simultaneous field surveys as it is 

based on end-member spectral libraries. A spectral library for a specific site can be 

collected once or spectral libraries from other locations can be used as the spectral 

signatures of major benthic types are the same for inland and coastal waters, 

tropical or temperate climate (Kutser et al. 2020). Moreover, these methods retrieve 

benthic type and water depth (and sometimes also water properties) simultaneously 

while empirical methods require that either the depth or bottom type has to be 

known. 

All analytical (physics based) approaches are more sensitive to the accuracy 

of reflectance data than empirical methods. More than 90% of signal measured 

above waterbodies by satellites originates from atmosphere. Consequently, a small 
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error in atmospheric correction may be as large as the whole water leaving signal 

and can hamper using of analytical methods. Mapping of benthic habitats requires 

also removing water column effects. Both atmospheric correction and removing 

water column effects are inverse problems that do not have a single solution. One 

of the ways to reduce both the uncertainties is using forward modelling to 

propagate the benthic reflectance through the water column with variable depth 

and optical properties (using a radiative transfer or bio-optical model) and through 

atmosphere and use this top of atmosphere spectral library to interpret TOA 

reflectance image. For example, Kutser et al. (2002, 2006) showed that this approach 

gave more reliable results than the conventional approach with atmospheric 

correction as the first step and using of top of water surface spectral library.  

Change in benthic habitats condition, such as coral bleaching and die-off (and 

replacement with algae), decrease in seagrass beds, replacement of perennial 

macroalage with fast growing filamentous species, etc. are important indicators of 

the health of benthic ecosystems. Such changes are detectable through colour 

changes in multi-temporal remote sensing images. Image differencing after 

radiometric normalisation offers possibility to detect such changes (Elvidge et al. 

2004; Yamano et al. 2004). 

A variety of approaches are available for the quantification of macrophytes 

abundance from remotely sensed images. First, there is an image classification 

approach, where classes with various abundance levels (such as low, medium, 

dense) are used instead of species/substrates classes (Pu and Bell, 2013; Koedsin et 

al. 2016; Kuhwald et al. 2022). Secondly, empirical methods can be used, where a 
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relationship is established between image reflectance and in situ observed 

abundance metrics, such as percent cover (Lyons et al. 2012; Koedsin et al. 2016), 

biomass (Knudby and Nordlund 2011; Vahtmäe et al. 2022), or leaf area index (LAI) 

(Wicaksono and Hafitz 2013, Hill et al. 2014). The resultant empirical relationship is 

then applied to the entire image producing a continuous map of SAV abundance. 

Finally, more complex physics-based radiative transfer models have been used to 

for SAV quantification (Hedley et al. 2016; Ghirardi et al. 2019). 

 

3.2.1.2 Benthic primary production 

Well-established in situ methods, such as benthic chambers equipped with 

oxygen sensors have been developed for benthic primary production measurement 

(Rodgers et al. 2015, Miller et al. 2011, Olivé et al. 2016). Although these techniques 

yield very precise estimates of primary production and have extensively been used 

for carbon flux studies, the methods are inappropriate for large scale studies. This is 

because the patterns of primary production are highly variable both in time and 

space and it becomes unrealistic and inefficient to replicate the measurements at 

quantities sufficient to cover the inherent variability of photosynthetic production at 

all these scales (Vahtmäe et al. 2022). Therefore, it is necessary to develop remote 

sensing based methods for large-scale benthic production estimates. Quantitative 

estimates of SAV abundance (e.g. biomass or LAI) allows indirect assessment of 

primary productivity and carbon fixation in aquatic ecosystems (Hill et al. 2014).  

Current terrestrial production models use the method proposed by Monteith (1972), 

where GPP is a function of the PAR, the fraction of PAR absorbed by the vegetation 
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(fAPAR), and the efficiency with which this absorbed light is utilised by vegetation 

(LUE) (Hilker et al. 2008; Rossini et al. 2012). Adaptations of Monteith models can be 

used in aquatic ecosystem for the benthic productivity assessment (Hochberg et al. 

2006; Vahtmäe et al. 2022).  

 

3.2.1.3 Bathymetry 

Mapping of water depth in inland and coastal waters with sonar or LIDAR 

systems is time consuming and expensive. Satellite derived bathymetry is a cheaper 

alternative in waters where the water bottom is seen from space. Bathymetry 

retrieval is based on either empirical or analytical methods. Empirical methods rely 

on the collection of large number of hydrographic measurements (e.g. sonar, lidar) 

to establish relationship between image reflectance and in situ measured water 

depth. Varieties of empirical approaches are proposed including linear band model 

introduced by Lyzenga (1978) and band-ratio model introduced by Stumpf et al. 

(2003). Analytical model inversion approaches are more complex and require  input 

of the spectral signatures of suspended and dissolved materials, as well as the 

bottom reflectance (Kutser et al. 2002, 2006; Hedley and Mumby 2003; Hedley et al. 

2009, 2018; Giardino et al. 2012; Casal et al. 2020). 

It is not surprising that the launch of Sentinel-2 has triggered interest in using 

this freely available and frequent source of information in bathymetry mapping 

(Hedley et al. 2018). Comparison with WorldView-2/3 has shown the combined 

advantage of WorldView’s higher spatial resolution relative to Sentinel-2 (Wilson et 

al. 2022; Dattola et al. 2018). Vahtmäe et al. (2021) compared the performance of 
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hyperspectral Compact Airborne Spectrographic Imager (CASI) and Sentinel-2 and 

concluded that hyperspectral CASI outperformed Sentinel-2 in benthic habitat 

mapping as well as in percent cover assessment. However, unlike airborne sensor 

data, Sentinel-2 data is free of charge and covers most of the Earth’s shallow water 

areas (both inland and marine). In general, most of the published papers conclude 

that Sentinel-2 is suitable for bathymetry and shallow water benthic habitat 

mapping even if it cannot provide as much information as very high spatial or 

spectral resolution sensors  (Hedley et al. 2018; Kovacs et a. 2018; Yunus et al. 2019. 

Kutser et al. 2020). 

 

3.2.2 Potential of including shallow water products in the Copernicus portfolio 

Based on the literature analysis above and on the presentations and 

discussions of the Water-ForCE Milan workshop there are several potential shallow 

water products that could be added to the Copernicus water portfolio.  

Bathymetry maps of shallow coastal waters around the world may be of 

interest for many different purposes from spatial planning to navigation safety. 

National governments, monitoring agencies, and the tourism and aquaculture 

industry are interested in the bathymetry of lakes and coastal waters.  Most potential 

users have regional to local scale needs and require the bathymetry map once. 

Consequently, creating a global bathymetry map would be a  one-off exercise for 

most of the world, not a service needed with high frequency. On the other hand, 

there are regions in the world where shoreline and bathymetry change fast and 

where frequent (e.g. a few times per year) bathymetry mapping would be beneficial. 

However, water tends to be more turbid in such dynamic regions and the maximum 
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depth that can be resolved with passive optical remote sensing is in the order of 

tens of centimetres. Thus, it is not feasible to use satellite derived bathymetry in 

such places.  

Sentinel-2 imagery can be used for relatively large-scale bathymetry 

mapping and such service is provided by several companies (EOMAP, DHI, 

Numerical Optics, Argans and others). Whether the services already provided by 

different companies should be included in Copernicus core services needs debates.  

European and/or global inland and coastal water habitat maps, created from 

Sentinel-2 imagery could be used in carbon sequestration studies (Duarte 2017). 

Moreover, benthic habitat maps provide important information for spatial planning, 

tourism, aquaculture, drinking water industry, etc. On the other hand, there are 

already global benthic and geomorphic maps available for tropical and subtropical 

regions. For example, the Allen Coral Atlas covers all regions of the world where 

corals can grow. It is based on Planet imagery with approximately 3 m spatial 

resolution. No equivalent product exists for European coastal and inland waters and 

creating consistent benthic products for the whole Europe may be a reasonable way 

forward.  

Providing shallow water products and imagery with better spatial resolution 

(e.g. Sentinel-2 NG with 5 m resolution) and more spectral bands will enhance the 

potential of  Copernicus to provide different shallow water products even further. 

The aim of the Copernicus Programme is not only to provide free core services, but 

also supporting the European space industry. Therefore, a balance has to be found 

between the public need in shallow water products that should be delivered free of 
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charge by the Copernicus core services and between supporting European space 

industry.   

 

3.3 Floating material products 

Monitoring marine litter (including plastic), cyanobacterial blooms (either just 

below the water surface or floating on the water surface), infestations of invasive 

plants (like water hyacinth) in rivers and lakes, or floating macroalgae (e.g. 

Sargassum, Ulva) in coastal waters are just a few “surface” products highly 

demanded by different users. Theoretically, many of them can be produced from 

high spectral and spatial resolution remote sensing data (e.g. airborne hyperspectral 

imagery). There are now multispectral satellite sensors with high or very high spatial 

resolution. These are useful for detecting floating material on the water surface. 

However, their spectral resolution may not be sufficient to separate different types 

of floating material. Moreover, using high-resolution commercial satellites in routine 

monitoring over large areas is prohibitively expensive.  

Copernicus satellites, like Sentinel-2, provide now an opportunity for 

mapping floating material as the data is available with reasonable spatial resolution 

and sufficient revisit times. Thus, now it is worth of analysing whether the floating 

material products should be included in the Copernicus portfolio. Water-ForCE 

organised a workshop in Milan in September 2022 in order to discuss what kind of 

floating material products can be produced with Copernicus. Water-ForCE Roadmap 

must provide also recommendations about what kind of products should be 

provided by Copernicus as a free service and what kind of products should be 
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provided by different entities (companies, institutes) as commercial downstream 

services. These aspects of floating material products were also discussed in the 

Water-ForCE workshop. 

 

3.3.1 Current state of the art 

Numerous types of floating material have been reported in surface waters 

through satellite ocean colour remote sensing (Qi et al. 2020). These include: marine 

litter and debris (e.g. Ciappa, 2022; Haarr et al. 2022; Knaeps et al. 2021; Martinez-

Vicente et al. 2020; Salgado-Hernanz et al. 2021a,b; Themistocleous et al. 2020; 

Topouzelis et al. 2021, 2020a,b); macroalgae such as Sargassum (e.g. Dierssen et al. 

2015; Fidai et al. 2020; Gower et al. 2013; Hu et al. 2015; Qi and Hu, 2021; Gower and 

King, 2011; Wang et al., 2018; Wang and Hu, 2021, 2016; Xiao et al. 2022) and green 

macroalgae Ulva (seaweed, e.g. Hu et al. 2010, 2017; Qi and Hu, 2021; Xiao et al. 2022); 

aquatic plants such as water hyacinth (Pontederia crassipes, e.g. Ade et al. 2022; 

Gerardo & de Lima, 2022; Janssens et al. 2022; Thamaga & Dube, 2019) and mats 

formed from the die-off floating seagrass (e.g. Dierssen et al. 2019, 2015; Suwandana 

et al. 2012; Veettil et al. 2020); various species of cyanobacteria (e.g. Trichodesmium, 

Nodularia, Aphanizomenon, Microcystis (Kutser 2004;  Ahn and Shanmugam, 2006; 

Babin et al., 2005; Bertani et al., 2017; Blondeau-Patissier et al. 2014; Chaffin et al. 

2021; Cullen et al. 1997; Duan et al. 2015; Gower et al. 2005; Hu et al. 2010a,b; Jia et al. 

2019; Kislik et al. 2022; Kutser, 2009; Liu et al. 2021; Melendez-Pastor et al., 2019; 

Ogashawara, 2019; Qi et al. 2017; Rodríguez-Benito et al. 2020; Sayers et al. 2019; Xu 

et al. 2021; etc.); dinoflagellates such as floating Noctiluca (Noctiluca scintillans; e.g. 

Baliarsingh et al. 2017; Liu et al. 2022); Phaeocystis (forms floating foam when it 
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degrades, Blauw et al., 2010; Lancelot, 1995; Peperzak et al., 1998) ; tree pollen (e.g. 

pollen of Scots pine); foams, whitecaps, bubbles (Dierssen 2019; Hu et al. 2023); oil 

slicks (Y. Lu et al. 2020); pumice rafts (Whiteside et al. 2021), etc. 

Floating marine litter or debris frequently contains plastics (synthetic 

polymers), but also wood, metal, glass, rubber, clothing, paper, sea slicks, and any 

other disposed or abandoned non-biodegradable parts (Salgado-Hernanz et al. 2021; 

Topouzelis et al. 2021). Plastics makes up up to 95% of the global ocean marine litter 

and they can be divided into macroplastics (size >5 mm); microplastics (size <5 mm); 

and nanoplastics (size <100 nm, Salgado-Hernanz et al., 2021). Marine litter has 

consequences for wildlife, biodiversity, human health, the global economy, and the 

climate (UNEP, United Nations Environment Programme, 2021). Independent and 

objective monitoring, reporting, and review mechanisms are critical for the 

successful management and clean-up of marine litter. High-resolution multispectral 

data from satellite images can help to map, track, and remove marine litter from the 

environment since they can systematically monitor much larger areas in 

comparison to traditional in situ observations (Topouzelis et al., 2021). Various 

methodologies (sighting, photointerpretation, supervised and unsupervised 

classification, indices, etc.) and in situ, air- and space-borne remote sensing 

platforms (Sentinel-1, SAR; Sentinel-2, MSI; Sentinel 3, OLCI; Aqua, MODIS; Landsat 8, 

OLI, TIRS; Worldview-2 and -3; Prisma; PlanetScope; TanDEM-X; RADARSAT-2; 

TerraSAR-Xremote, etc.) have been used to detect and discriminate marine litter 

from other floating materials (Aoyama, 2016; Basu et al. 2021; Biermann et al. 2020a,b; 

Kikaki et al. 2020; Martinez-Vicente et al.  2020; Paula M. Salgado-Hernanz et al. 2021; 
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Themistocleous et al. 2020; Topouzelis et al. 2020a, b). The spatial resolution of the 

sensors has been from 3 cm to 20 m, and a spectral range from microwaves to 

shortwave infrared (Aoyama, 2016; Basu et al. 2021; Biermann et al. 2020a,b; Kikaki 

et al. 2020; Martinez-Vicente et al. 2020; Paula M. Salgado-Hernanz et al. 2021; 

Themistocleous et al. 2020; Topouzelis et al. 2021). Currently, aircraft sensors with 

high spatial resolution (<3 m) and broad wavelength range (λ = 400 to 2500 nm) 

appear most suited to detect marine litter, whereas Synthetic Aperture Radar (SAR) 

sensors (λ = 3.1 to 5.6 cm) may detect sea-slicks (aggregated microplastics that are 

accumulated in the upper layer of the waterbody and by microbes and 

microorganisms, Salgado-Hernanz et al. 2021). Detection and monitoring are 

significantly impacted by different physical and technical limitations like 

atmospheric and sea-surface effects, clouds, radiometric, spatial, and temporal 

resolutions of satellite sensors, and availability of in situ data (Aoyama, 2016; Garaba 

et al., 2018; Garaba and Dierssen, 2018; Garcia-Garin et al. 2020; Moy et al. 2018; 

Topouzelis et al. 2021). Dedicated aerial surveys (crewed aircraft) present a 

significant advantage over satellites in terms of spatial resolution, they are still 

limited acquisition frequency, and are relatively costly. Their primary use is for proof-

of-concept studies and to obtain reference data, rather than large-scale monitoring 

(Garcia-Garin et al., 2020; Moy et al. 2018; Topouzelis et al. 2021, 2020a,b). Uncrewed 

aerial systems (UAS) are much less costly, but relatively limited in terms of flight time 

and automation potential (Garcia-Garin et al. 2020; Moy et al, 2018; Topouzelis et al. 

2021, 2020a,b). Technical advancements will allow for large-scale automated 

acquisition of remote sensing data using UAS, whilst satellites are the only platforms 
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capable of continued global coverage and help to study remote, hard-to-reach areas 

(Basu et al. 2021; Biermann et al. 2020a,b; Topouzelis et al. 2021, 2020a,b, Martinez-

Vicente, 2022).  

Although varying in terms of application method, the processing steps are 

usually common in most detection algorithms: (1) pre-processing of the data and (2) 

classification of floating elements into marine debris (Aoyama, 2016; Basu et al., 2021; 

Garaba and Dierssen, 2018; Martínez-Vicente et al. 2019; Topouzelis et al. 2021). Pre-

processing includes atmospheric correction, land masking, cloud detection, cloud 

edge, and shadow masking, white caps detection, glint removal, and correction 

(Topouzelis et al. 2021). Unfortunately, atmospheric correction models often fail or 

give incorrect results in the case of strong surface accumulations. The classification 

includes the processes needed for the identification of pixels containing 

concentrations of floating marine litter. (Aoyama, 2016; Basu et al. 2021; Topouzelis 

et al. 2021). A number of different methodologies including indices (e.g., the Floating 

Debris Index), and machine learning techniques have been proposed to detect 

floating marine litter and to discriminate between natural debris and marine litter 

(Biermann et al. 2020a,b; Garaba et al. 2018; Martinez-Vicente et al. 2020; Topouzelis 

et al. 2021). For a marine litter observation system to be operational at large scales, 

these methodologies and techniques need to be automated, cover large areas, and 

work with all available satellite datasets (Hu, 2022; Kremezi et al., 2022; Martin et al., 

2021; Martínez-Vicente et al., 2019; Topouzelis et al., 2019, 2020, 2021; Zhou et al., 

2022). Such developments require a significant amount of in situ validated cal/val 

data e.g., in situ observations of traditional cruises, calibration/validation targets, 
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citizen scientist reports, etc. (ESA, 2021; Martínez-Vicente et al., 2019; Maximenko et 

al., 2019; Topouzelis et al., 2021). 

Cyanobacterial blooms can cause various ecological and economic 

problems and the potential toxicity of some species can make them potentially 

hazardous to animal and human health. The effectiveness of airborne (Wrigley and 

Horne, 1974) and satellite (Öström, 1975) remote sensing in detecting phytoplankton 

blooms were demonstrated more than three decades ago (see references in Kutser, 

2009). Developing robust remote sensing algorithms that perform well in stratified 

waters and in the case of cyanobacteria floating on the water surface requires large 

amount of match-up data. However, the water sampling techniques and strategies 

used in monitoring programs do not allow to use monitoring data as match-ups in 

the case when vertical stratification occurs or bloom is spatially very heterogenous. 

The data that can be used in match-up analysis should contain information about 

vertical profile of the biomass and very accurate coordinates as cyanobacterial 

biomass may vary in orders of magnitude with few tens of meters. Moreover, the 2 

hour time window between in situ sampling and satellite overpass, requested by 

cal/val protocols, is too relaxed in heterogenous waters and the material floating on 

the water surface may travel far even in the matter of minutes. 

Phytoplankton biomass can be described in terms of the concentration of 

chlorophyll-a and it is the main characteristic used in remote sensing of blooms. The 

chlorophyll-a retrieval algorithms based on blue to green band ratios work in clear 

(oligotrophic) waters whereas the green to NIR part of the spectrum has more 

potential in productive, turbid, and/or CDOM-rich coastal and inland waters because 
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this spectral region is less affected by the overlap in the absorption of accessory 

pigments, detrital matter and CDOM (Arst and Kutser, 1994; Ekstrand, 1990; Holligan 

et al. 1983; Kutser et al. 1998a, 1998b, 1996; Kutser et al. 1995b, 1995a; Kutser and Arst, 

1994; Lavender and Groom, 2001; Sathyendranath et al. 2001, 1997; Siegel et al. 1999; 

Stumpf and Tyler, 1988; Subramaniam and Carpenter, 1994; Tassan, 1995; Yacobi et 

al. 1995; Zimba and Gitelson, 2006, etc.). Additionally, many chlorophyll-a retrieval 

algorithms developed for turbid coastal and inland waters use the peak in 

reflectance spectra near 700 nm to quantify high phytoplankton abundance 

(Gitelson 1992; Cunningham et al. 2001; Dall’Olmo and Gitelson, 2006, 2005; Dekker, 

1993; Gitelson et al., 1993; Gower and King, 2007; Gower et al., 1999; Hoogenboom et 

al. 1998; Jupp et al. 1994; Kallio et al., 2003, 2001; Kutser et al. 1997; Millie et al., 2002; 

Simis et al., 2007, 2005, etc.). 

However, pigments other than chlorophyll-a can be used as a proxy for 

phytoplankton biomass too. For example, most cyanobacteria contain a phycobilin 

pigment called phycocyanin (Jeffrey et al. 2011). It has been shown (Dekker, 1993; 

Schalles and Yacobi, 2000; Simis et al. 2007, 2005) that quantitative mapping of 

phycocyanin by remote sensing is possible. Phycocyanin is detectable due to an 

absorption feature at 615 nm and, in some situations, fluorescence around 650 nm. 

These features are not detectable at low abundance of cyanobacteria (Kutser et al. 

2006) or when other phytoplankton are abundant (Simis et al. 2007), which means 

that quantitative mapping of phycocyanin by means of remote sensing may be 

limited and detecting specific spectral features caused by accessory pigments 

requires high spectral resolution of the sensors (Kutser, 2004). Laboratory (Quibell, 
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1992; Richardson, 1996), airborne (Jupp et al. 1994) and space-borne data (Kutser, 

2004) indicate that hyperspectral sensors with a spectral resolution of at least 10 

nm should be acceptable to detect pigments like phycocyanin. Machine learning 

techniques can overcome some of the limitations of individual semi-empirical, semi-

analytical, and quasi-analytical phycocyanin retrieval algorithms by combining, and 

benefiting from, the information available from multiple optical features to estimate 

phycocyanin (O’Shea et al., 2021; Simis et al., 2007, 2005; Song et al., 2014, 2012; Sun 

et al., 2012). For example, Mixture Density Network (MDN, Bishop, 1994) that uses line 

heights and band ratios to accurately estimate phycocyanin, in the presence of ∆Rrs 

has shown good results in retrieving phycocyanin concentration from remote 

sensing imagery (O’Shea et al., 2021). MDN is particularly suited for non-unique 

inverse problems where a low number of training data are available and it has 

proved to be notably better than multispectral algorithms at preventing 

overestimation on low (<10 mg m−3) phycocyanin concentrations (O’Shea et al., 2021). 

Some cyanobacteria species produce surface blooms and scums (IOCCG, 

2021). This biomass may be with very variable density from dust-like to mats several 

centimetres thick. Unfortunately, when scums form, volumetric concentration 

estimates are not possible. However, more work is needed to determine the 

intensity (e.g. layer thickness) of scums to support appropriate management 

response.  

Quantitative mapping of algal blooms is complicated also due to the high 

spatial heterogeneity of the blooms. Patchy blooms may occur below the pixel size 

of current satellite sensors, even the 10-m resolution offered by MSI (Gitelson, 1992; 
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Kutser, 2004; McKinna, 2015). To reduce spatial and temporal ‘smearing’ effects is to 

always use full resolution, daily Level 2 ocean colour data when applying algorithms 

and avoid the use of binned Level 3 products (McKinna, 2015).  

Additionally, De Santi et al. 2019 studied whether the use of synthetic 

aperture radar (SAR) images can compensate for the weaknesses of optical images 

for cyanobacteria bloom monitoring purposes in the occurrence of cloudy skies (de 

Santi et al. 2019). They proposed a method to detect cyanobacteria bloom based on 

the dependency between wind vector and radar backscatter. Qualitative 

comparison with optical imagery gathered from Sentinel-2 and Sentinel-3 satellites 

combined with meteorological data reveals that the method shows reasonable 

results for most of the analysed cases (79%) strongly supporting the use of Sentinel 

1 Level 2 products to improve the spatiotemporal detection of algal bloom and 

complete the observations from optical sensors (de Santi et al. 2019).  

Massive landings of brown macroalgae Sargassum are regularly registered 

since 2011 in large areas in Pacific and Tropical Atlantic bringing along large 

negative impacts on local populations, coastal marine ecosystems, and the 

economic sector (tourism and fisheries). Remote sensing can help to detect, map, 

and estimate the trajectories and potential landings on the coasts. There are lots of 

associated studies (e.g. (Dierssen et al., 2015; Gower et al., 2013, 2006; Gower and 

King, 2020, 2011; Hu et al., 2015a, 2015b; Marmorino et al., 2011; Qi and Hu, 2021; Sun 

et al., 2021; Wang et al., 2019, 2018; Wang and Hu, 2021, 2016), still there are gaps 

mainly related to locations, species identification, and the quantity and the amount 

landing on beaches. ESA project ‘Sargassum Monitoring Service’ managed to 
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address some of these gaps in the Caribbean area (Jimenez-Mariani, 2020). 

Sargassum has distinctive reflectance curvature around 630 nm due to its 

chlorophyll c pigment, which provides a distinctive spectral signature when 

combined with the reflectance ratio between brown (ca 650 nm) and green (ca 555 

nm) wavelengths (Hu et al. 2015). Additionally, the Sargassum Index derived from 

reflectance ratios at 650 and 630 nm has been used to effectively discriminate 

Sargassum from Syringodium wrack (Dierssen et al. 2015). For a 10-nm resolution 

sensor, several indices established from 6 bands (centred at 555, 605, 625, 645, 685, 

755 nm) are shown to be effective to differentiate Sargassum from all other floating 

materials (Hu et al. 2015). Although, spectral discrimination is degraded when a pixel 

is mixed between Sargassum and water and a minimum of 20–30% Sargassum 

coverage within a pixel is required (Hu et al. 2015). As a result, many of the small 

slicks observed in high resolution image (Worldview-2, spatial resolution 2 m) are 

not visible in the reduced-resolution image (HyspIRI, 60 m, Hu et al. 2015). Despite 

this, the spectral shapes of Sentinel-3 OLCI have shown typical red-edge reflectance 

of floating vegetation and the local reflectance maximum of around 620 nm 

indicating the presence of Sargassum (Qi et al. 2020).  

However, the results of the spectral measurements have shown that the 

characteristic features in reflectance spectra of major groups, like brown 

macroalgae and brownish corals, are globally consistent (Kutser et al., 2020). Typical 

features of the brown type are a peak at 600–610 nm and two shoulders at around 

575 nm and 650 nm (Hochberg et al. 2004; Holden and LeDrew, 1999; Holden and 

LeDrew, 1998; Holden et al. 1997; Kutser et al. 2006b; Kutser et al. 2006; Kutser and 
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Jupp, 2006; Maritorena, 2007; Vahtmäe et al. 2006, Kutser et al. 2020) and it is nearly 

impossible to separate them based on their reflectance spectra (Kutser et al. 2020).  

Green macroalgae Ulva, a common seaweed, may become harmful to both 

the environment and humans once accumulated in coastal waters and on beaches 

causing environmental, ecological, and economical problems (e.g., water clarity, 

oxygen consumption, beach pollution, insect attraction, bad smells, etc., Qi & Hu, 

2021). Ulva also occupies a similar habitat to the more preferable seagrasses and can 

replace seagrass as a result of coastal eutrophication. Remote sensing can help to 

provide information about distributions, temporal changes, and abundance and 

trace the origins. Typical reflectance spectra of Ulva show a high red-edge 

reflectance and local reflectance maximum of around 560 nm (Qi & Hu, 2021). Even 

the OLCI spectra have shown the red-edge reflectance characteristics typical for 

Ulva (Qi et al. 2020). The use of band-combination indices such as the alternative 

floating algae index (AFAI) and green-red-difference (GRD) help to remove spectrally 

coherent noise (e.g., from residual errors of atmospheric correction, sun glint 

correction, and whitecap correction), and to quantify the red-edge reflectance (to 

differentiate vegetation from non-living matters) or to quantify the spectral 

difference between different algae types (Qi and Hu, 2021). Additionally, detection 

and discrimination limits depend on the relative coverage of algae compared to 

clear substrate or water in a given pixel. When the sub-pixel proportion of algae 

coverage is 5%, reflectance is dominated by water in subtidal zones (Qi and Hu, 

2021). For Sentinel-3 OLCI, the detection limit is approximately 0.5% of a pixel, while 

the discrimination limit varies between 0.8% for clear water and 2% for turbid water 
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(Qi and Hu, 2021). For Sentinel-2 MSI, the detection limit is about 2%, while the 

discrimination limit is about 6% for all water types (Qi and Hu, 2021). Below these 

two limits, detection and discrimination of macroalgae using the two sensors are 

subject to large uncertainties (Qi and Hu, 2021). Additionally, green algae, seagrasses, 

and other submerged aquatic plants are hardly separable from each other based on 

their optical signature, since their spectral reflectance is dominated by chlorophyll 

a, and accessory pigments take a minor role (Kutser et al. 2020). Typically, they have 

relatively smoothly curved reflectance spectra with a local maximum in the green 

part of the spectrum, while the common to all plants high near-infrared signal is 

masked by water absorption (Kutser et al. 2006; Vahtmäe et al. 2006; Kutser et al. 

2020). 

Die-off produced mats of floating seagrass. The high turnover of buoyant 

leaves from submerged seagrass meadows can produce large aggregations of 

floating vegetation called seagrass wracks (Dierssen et al. 2015). Vegetative mats 

have ecological and economic significance providing a breeding habitat, impacting 

negatively the terrestrial ecosystems and the growth of salt marshes, and 

preventing human access to beaches (Dierssen et al. 2015). Additionally, they are 

hotspots of organic carbon degradation (Dierssen et al. 2015). Remote sensing can 

help to measure the extent and movement of the mats. Airborne remote sensing 

with the Portable Remote Imaging Spectrometer (PRISM, spatial res. 0.9-2.7 m) 

sensor has been highly effective at assessing the fine-scale aggregations of 

seagrass wrack that could not be easily observed from satellites (Dierssen et al. 

2015). Moreover, remote sensing can help forecast when coastal clean-up efforts 
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may be required. In this case, the type of floating vegetation may not be as important 

as the frequency and extent of the floating biomass and the high spatial and 

temporal resolution of the imagery becomes more important than spectral 

resolution (Dierssen et al. 2015). 

The free-floating water hyacinth has a rapid reproductive capacity. It 

outcompetes other aquatic plant species, forming dense, free-floating mats, which 

in many instances completely cover fresh-water surfaces (Ade et al. 2022; Gerardo & 

de Lima, 2022). Water hyacinth is spread to almost all continents (Ade et al. 2022; 

Gerardo & de Lima, 2022). It has negative impacts on wetland ecosystem processes 

like nutrient cycling, hydrology, and energy budgets and their introduction threatens 

ecosystem biodiversity and function, and often results in economic impact on 

fisheries, hydropower generation (e.g., waterways and pumping stations), and 

transportation services (Ade et al. 2022; Gerardo & de Lima, 2022). Remote sensing 

can be used for the spatio-temporal distribution of water hyacinth to monitor and 

control its blooming and invasion. Genus and species level discrimination between 

water hyacinth (Eichornia crassipes) and water primrose (Ludwigia spp.) using 

Sentinel-2 multispectral satellite data and machine-learning classifiers in summer 

and fall have been done by Ade et al. (2022). Their classifiers identified submerged 

and emergent aquatic vegetation at the community level (Ade et al. 2022). Random 

forest models using Sentinel-2 data achieved an average overall accuracy of 90%, 

and class accuracies of 79–91% and 85–95% for water hyacinth and water primrose, 

respectively (Ade et al. 2022). Sentinel-2 derived maps compared well to those 

derived from airborne imaging spectroscopy and they also identified 
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misclassifications that can be attributed to the coarser Sentinel-2 spectral and 

spatial resolutions (Ade et al. 2022). Their results demonstrate that the intra-annual 

temporal gaps between airborne imaging spectroscopy observations can be 

supplemented with Sentinel-2 satellite data and thus, rapidly growing/expanding 

vegetation can be tracked in real-time (Ade et al. 2022).  

Free floating duckweed, particularly Lemna minor is widely found in 

freshwaters all over the world. Duckweed provides multiple ecosystem functions 

and services, but its excessive spread can have negative environmental impacts 

(including ecological and socio-economic impacts), e.g., a reduction of flow velocity, 

an increase of sedimentation, decrease of light attenuation, and anoxia (Gerardo & 

de Lima, 2022). Remote sensing can be used to map and to estimate the density of 

duckweed. The NDAVI (Normalised Difference Aquatic Vegetation Index) has been 

identified as the vegetation index that depicts the presence of duckweeds in the 

surface of the watercourse (Gerardo and de Lima, 2022). NDAVI exploits the blue 

natural colour range and the NIR range (Gerardo & de Lima, 2022). Additionally, 

average spectral reflectance across wavelengths 350–2500 nm in response 

to Lemna areal coverages of 0–100% and three thickness levels (for 100% areal 

coverage only) indicate substantially greater NIR reflectance for dense areal 

coverages and thick-layered assemblages (Tian et al. 2010). Differences in 

reflectance in the short-wavelength infrared (SWIR) range (1450–1800 nm, and 

1950–2350 nm) are effectively imperceptible for areas of <30% coverage (Tian et al. 

2010). Overall reflectance in the 350–2500 nm region has been greater with 

increasing percent coverage and with increasing layer thickness, trending most 
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sharply upward between 700 and 915 nm. At the same time, the depth of the water 

absorption features centred at wavelengths 977 and 1200 nm increase, creating 

distinctive features of the Lemna signature (Tian et al. 2010). However, the 

performance of remote sensing of submerged plants depends both on the depth of 

the top of the vegetation and on turbidity (Tian et al. 2010).  

Each spring, pine pollen coats considerable expanses of surface waters such 

as the Baltic Sea (Pawlik and Ficek, 2022). There are areas where its concentrations 

in the surface layer are so high that they are the dominant constituent of the 

suspended particulate matter (Pawlik and Ficek, 2022). Large pollen concentrations 

are found not only in the immediate area of the shoreline but can also make up more 

than 40% of all the 1.25–250 µm SPM floating in offshore areas (Pawlik and Ficek, 

2022). Since pollen contains a substantial amount of carbon and influences the 

optical properties of the water, we should learn more about its bio-optical and 

biogeochemical characteristics. Pine pollen has relatively unique reflectance 

spectral shapes (sharp increases from 400 nm to 500 nm) which are confirmed by 

laboratory experiments (Hu et al., 2023, Toming et al., unpublished). It may be hard 

to detect pollen in satellite-derived spectra, making it more difficult to differentiate 

pollen grains from marine debris using spectroscopy alone. Ancillary information, 

e.g., occurrence time, location, scale, and duration may be used to make an educated 

inference (Hu et al., 2023). 

Conclusions 

● Most floating materials have negative ecological and socio-economical 

effects.  
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● Currently, satellites are the only platforms capable of contiguous global 

monitoring of floating material. 

● With appropriate spectral resolution, spectral range, temporal resolution, 

sensitivity, geospatial resolution, and coverage, remote sensing sensors can 

be used to detect, map, and discriminate different types of floating material- 

very challenging at the current technological level. 

● Appropriate pre-processing (atmospheric correction, cloud screening, sun 

glint removal, etc.) is extremely important to accurately detect and 

differentiate floating material. 

● The success of the detection and discrimination are largely influenced by 

pixel coverage and the optical properties of the water, e.g., clear vs turbid. 

When the pixel coverage is small, the reflectance is dominated by water and 

the detection and discrimination of floating material contains high errors or 

is impossible. 

● From an economical point of view, it is often important to know the 

frequency, movement and magnitude of the floating biomass and to know 

the type of floating vegetation is not so essential. Hence high spatial and 

temporal resolution of the sensor is more important than spectral resolution 

in that case. 

● Hyperspectral information of different floating material (in different 

conditions, e.g., wet, dry, partially decayed, etc.), in situ validated calibration 

and validation data, as well as additional observational data (occurrence time, 
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location duration, etc.) from in situ observations of traditional cruises, citizen 

scientist reports, social media, etc., are highly needed. 

● For continued development of detection methods, specific efforts to collect 

in situ reference observations are required 

 

3.3.2 Potential of including floating matter products in the Copernicus portfolio 

Detecting material floating on the water surface is more straightforward than 

detecting water column properties. This can be achieved across a range of remote 

sensors including radar, optical and thermal sensors. However, recognising the type 

of floating material is a much larger challenge, which in some cases will even be 

impossible with hyperspectral sensors, such as when the occurrence is below the 

spatial resolution of the sensor (Kutser, 2004). It should also be expected that co-

occurrence of materials from macroplastics to pieces of wood, seagrasses and 

macroalgae, mixed with foam, reduces estimation accuracy. Surface accumulations 

of cyanobacteria or rafts of macroalgae (Sargassum, Ulva) are relatively easier to 

diagnose, particularly in monospecific blooms.  

The shape of the reflectance spectra of all brown algae is identical and the 

reflectance of all green algae and plants is similar (Kutser et al. 2020). Thus, it is 

relatively straightforward to recognise these two broad groups of floating material 

provided that the sensor has an appropriate selection of wavebands and spatial 

resolution that is compatible with the distribution of the surface accumulation. 

Reflectance spectra of bloom-forming cyanobacteria also present typical optical 

features that aid recognition and their detection in blooms.  
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The Sentinel-2 MSI sensor can be used in detecting floating material in inland 

and coastal waters. Its usefulness has been described above. However, there are 

studies (Hu, 2022) that show that many of the spectral features attributed to floating 

material are artefacts caused by different spatial resolution of Sentinel-2 MSI pixels 

(10 m, 20 m and 60 m) at different wavebands. Moreover, spectral resolution of 

Sentinel-2 MSI reduces its ability to distinguish and discriminate among floating 

materials. In most cases the floating material is on the water surface in filaments 

that are narrower than the 10 m pixel and due to that the floating material 

reflectance can look like something else. Improved homogenous spatial resolution 

(for all the bands minimum 5m) would improve considerably the lower limits of 

detectability. 

On the other hand, in many cases information about the floating material is 

usually needed at local scale and there is no need in recognising floating material 

from the spectral signature. Local knowledge tells with sufficient accuracy what the 

floating material is. For example, in areas infested with water hyacinth, it is important 

to map the areas where the hyacinth is at this particular moment of time. The issue 

that the spectral signature of the hyacinth is identical (when using multispectral 

sensors) to other green vegetation (seagrasses, Ulva.) is not critical as these do not 

occur in the same problematic areas. Differentiating freely floating hyacinth from 

attached vegetation (e.g., reeds) is possible using multiple imageries and it does not 

matter if the spectral signatures are similar. In the same way, it can be deducted 

from the imagery that there are floating cyanobacteria if we have images with high 

reflectance from the offshore regions of the Baltic Sea in the middle of summer 
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although recent studies (Hu, 2022; Hu et al. 2023) have shown pollen and 

cyanobacterial seasons may overlap and then we will have to analyse spectral 

features from the high reflectance areas in order to understand what material is 

floating on the water surface.  

In a summary we may say that a generic “floating material” product available 

across inland and coastal waters is feasible and can be done with Copernicus 

sensors like Sentinel-2. Improved spectral and spatial characteristics of Sentinel-

2NG and even Sentinel-3NG (both currently under discussion). Moreover, using 

sensor data at higher spatial, spectral and temporal resolution (from commercial 

satellites, airborne sensors, etc.) may be financially viable in specific regions. 

Therefore, it has to be assessed whether it will be reasonable to produce some of 

the floating material products as a  free core service or should the services be 

provided at local or reginal scale and on commercial bases. 

4. Recommendations for enhancement of 

Copernicus water services portfolio 

Currently, there are no satellite sensor which specifically address all challenges 

related to coastal, and particularly, inland water remote sensing. Consequently, 

suboptimal (from spatial and spectral resolution and/or radiometric point of view) 

sensors are used for developing and delivering water quality related remote sensing 

products (Palmer et al. 2015). On the other hand, OLCI on Sentinel-3 is currently used 

to provide turbidity, Trophic State Index and reflectance for >4200 lakes. This is a 
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small fraction of the total number of lakes on Earth (117 million according to 

(Verpoorter et al. 2014), but these 4200 lakes contain the majority of lake area and 

volume on Earth. Moreover, as described above, MSI on Sentinel-2 allows mapping 

of some water quality parameters in smaller lakes and rivers and supports detection 

of shallow water and floating matter products which are not currently in the 

Copernicus portfolio. Consequently, there are both user needs and existing technical 

capabilities to expand the Copernicus water quality services portfolio in these areas. 

Several of the above-mentioned products require further validation in a wide variety 

of lakes and coastal waters in order to offer robust products that can be delivered 

through the Copernicus services. There are also products that are already delivered 

by industry and/or academia using Copernicus or commercial data. Further 

stakeholder consultation may prove useful to determine whether the Copernicus 

core or downstream (including on-demand) services are more appropriate as a 

delivery mechanism.  
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